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High-throughput sequencing, especially of exomes, is a popular diagnostic tool, but it is difficult to determine which tools are the
best at analyzing this data. In this study, we use the NIST Genome in a Bottle results as a novel resource for validation of our exome
analysis pipeline.We use six different aligners and five different variant callers to determine which pipeline, of the 30 total, performs
the best on a human exome that was used to help generate the list of variants detected by the Genome in a Bottle Consortium. Of
these 30 pipelines, we found that Novoalign in conjunction with GATK UnifiedGenotyper exhibited the highest sensitivity while
maintaining a low number of false positives for SNVs. However, it is apparent that indels are still difficult for any pipeline to handle
with none of the tools achieving an average sensitivity higher than 33% or a Positive Predictive Value (PPV) higher than 53%. Lastly,
as expected, it was found that aligners can play as vital a role in variant detection as variant callers themselves.

1. Background

In the past few years there have been many advances made
to high-throughput sequencing technologies. Due to these
advances, it is now possible to detect a great number of
potential disease-causing variants [1], and, in a few cases,
next generation sequencing (NGS) data has even been used
for diagnostic purposes [2–4]. This is partially due to the
developments in sequencing technologies over the past few
years but also due to the number of improvements made to
the various bioinformatic tools used to analyze themountains
of data produced by NGS instruments [5].

When searching for mutations in a patient, a typical
workflow is to sequence their exome with an Illumina
sequencer, align the raw data to the human reference genome,
and then identify single nucleotide variants (SNVs) or short
insertions and deletions (indels) that could possibly cause
or influence the phenotype of interest [6]. While this is

fairly straightforward, deciding on the best tools to use at
each stage of the analysis pipeline is not. There are a large
number of tools that are used in various intermediate steps,
but the two most important steps in the entire process are
aligning the raw reads to the genome and then searching
for variants (i.e., SNVs and indels) [7]. In this study, we aim
to help today’s bioinformatician by elucidating the correct
combination of short read alignment tool and variant calling
tool for processing exome sequencing data produced by NGS
instruments.

A number of these studies have been performed in
the past, but they all had drawbacks of some form or
another. Ideally one should have a list of every known variant
contained in a sample so that when a pipeline of analysis
tools is run, you can test it to know with certainty that it
is performing correctly. However, in the past no such list
existed, so validation had to be performed by less complete
methods. In some instances, validation was performed by
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generating simulated data so as to create a set of known true
positives (TP) and true negatives (TN) [8–10]. While this
conveniently provides a list of every TP andTN in the dataset,
it does a poor job of accurately representing biology. Other
methods of validating variant calling pipelines include using
genotyping arrays or Sanger sequencing to obtain a list of
TPs and false positives (FP) [11]. These have the upside of
providing biologically validated results, but they also have
the downside of not being comprehensive due to the limited
number of spots on genotyping arrays and the prohibitive
cost of Sanger validationwhenperformed thousands of times.
Lastly, none of these studies aimed at looking at the effect the
short read aligner had on variant calling. Consequently, the
upstream effect of aligner performance could not be assessed
independently.

In this study, we have the advantage of a list of variants
for an anonymous female from Utah (subject ID: NA12878,
originally sequenced for the 1000 Genomes project [12])
that was experimentally validated by the NIST-led Genome
in a Bottle (GiaB) Consortium. This list of variants was
created by integrating 14 different datasets from five different
sequencers, and it allows us to validate any list of variants
generated by our exome analysis pipelines [7]. The novelty of
this work is to validate the right combination of aligners and
variant callers against a comprehensive and experimentally
determined variant dataset: NIST-GiaB.

To perform our analysis we will be using one of the
exome datasets originally used to create the NIST-GiaB
list. We chose only one of the original Illumina TruSeq-
generated exomes because we wanted to provide a standard
use case scenario for someone who wishes to perform NGS
analysis, and while whole genome sequencing is continuing
to drop in price, exome sequencing is still a popular and
viable alternative [1]. It is also important to note that, per
Bamshad et al., currently the expected number of SNVs per
European-American exome is 20,283 ± 523 [13]. Despite this,
the total number of SNVs found in the NIST-GiaB list with
the potential to exist in TruSeq exome dataset was 34,886,
which is significantly higher than expected. This is likely due
to the fact that while the exome kit was used to generate
NIST-GiaB data it was also supplemented by whole genome
sequencing.

Lastly, we considered a large number of aligners [14–
21] and variant callers [22–29] but ultimately chose the 11
tools based on prevalence, popularity, and relevancy to our
dataset (e.g., SNVMix, VarScan2, and MuTect were not used
as they are intended for use on tumor-derived samples). Our
analysis itself involves comparing six aligners (Bowtie2 [14],
BWA sampe [15], BWAmem [16], CUSHAW3 [17], MOSAIK
[18], and Novoalign) and five variant callers (FreeBayes
[22], GATK HaplotypeCaller, GATK UnifiedGenotyper [23],
SAMtools mpileup [24], and SNPSVM [25]). In this study
we also try to determine how much of an effect, if any, the
aligner has on variant calling and which aligners perform
best when using a normal Illumina exome sample. To our
knowledge, this is the first report which validates all possible
combinations (total of 30 pipelines) of a wide array of aligners
and variant callers.

Table 1: Alignment percentages for filtered reads and unfiltered
reads.The average depth of coverage is for the alignment files created
with the filtered reads.

Aligner % reads aligned
(unfiltered)

% reads aligned
(filtered)

Average
depth of
coverage

Bowtie2 89.73 98.73 47.97
BWAmem 92.91 99.85 46.89
BWA sampe 85.95 97.49 46.67
CUSHAW3 85.00 99.81 47.69
MOSAIK 85.68 96.22 45.14
Novoalign 82.21 94.20 45.62

2. Methods

2.1. Datasets. Human reference genome hg19 was down-
loaded from the UCSC browser (http://hgdownload.soe.ucsc
.edu/goldenPath/hg19/chromosomes/) and was used to per-
form the alignments. The human exome, SRR098401,
was downloaded from the Sequence Read Archive (SRA)
(http://www.ncbi.nlm.nih.gov/sra). For annotation and cal-
ibration purposes, dbSNP137 without sites after version 129,
HapMap 3.3, Human Omni 2.5 BeadChip, and Mills and
1000G gold standard indel set lists were used (all from ftp://
ftp.broadinstitute.org/distribution/gsa/gatk resources.tgz).

2.2. The Pipeline. Figure 1 shows the workflow used in this
study, which is similar to the one outlined in the Best
Practices guide produced by The Broad Institute [30]. This
involves a number of steps to ensure that the alignment
files produced are of the highest quality as well as several
more to guarantee the variants are called correctly. First, raw
reads were aligned to hg19, and then PCR duplicates were
removed from the alignment. Next, to help with indel identi-
fication later in the pipeline, read realignment was performed
around indels. The last step of alignment processing was to
perform a base quality score recalibration step, which helps
to ameliorate the inherent bias and inaccuracies of scores
issued by sequencers. Unfortunately, despite these steps, the
alignment rate of each aligner was significantly lower than
expected, so to offset this, the fastx toolkit was used to filter
out lowquality reads (Table 1). Lowquality readswere defined
as those reads that had at least half of their quality scores
below 30. Following alignment processing, variant calling
and variant filtering were performed.

The six tools used to generate alignments were Bowtie2,
BWA mem, BWA sampe, CUSHAW3, MOSAIK, and
Novoalign, and the five tools used to generate variants were
FreeBayes, GATK HaplotypeCaller, GATK UnifiedGeno-
typer, SAMtools mpileup, and SNPSVM, as can be seen in
Table 2.

2.3. Filtering. Raw data was acquired from the SRA
(SRR098401), split with fastq-dump, and filtered
using the fastx toolkit. Specifically, fastq-dump used
the --split files and --split spot flags, and
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Filter raw reads

Align reads to hg19 using six aligners

Remove PCR duplicates from alignments

Realign reads around indels

Recalibrate base quality scores

Perform variant calling using five variant callers

Filter variants using tool-specific filters

Compare variant to Genome in a Bottle results

Bowtie2 CUSHAW3

BWA-mem MOSAIK
BWA-sampe Novoalign

Prepare alignment files for variant calling

Freebayes
GATK—UnifiedGenotyper
GATK—HaplotypeCaller

SAMtools mpileup
SNPSVM

Call variants using alignment files

Figure 1: Schematic of the data analysis pipeline used. To ensure that the highest quality alignments are created, reads are first filtered and
then aligned to the human reference genome, hg19. Next, PCR duplicates are removed, reads are aligned around putative indels, and base
quality scores are recalibrated. Finally, variants are called and validated against the NIST-GiaB list of variants.

Table 2:These are the 11 different tools used thatmade up the 30 (six
aligners ∗ five variant callers) different pipelines. Software versions
are also included to ensure reproducibility.

Tool Type Version Reference
Bowtie2 Aligner 2.1.0 [14]
BWA sampe Aligner 0.7.5a [15]
BWAmem Aligner 0.7.5a [16]
CUSHAW3 Aligner 3.0.3 [17]
MOSAIK Aligner 2.2.3 [18]
Novoalign Aligner 3.02.07 N/A
FreeBayes Genotyper v9.9.2-19-g011561f [22]
GATK
HaplotypeCaller Genotyper 2.7-2 N/A

GATK
UnifiedGenotyper Genotyper 2.7-2 [23]

SAMtools mpileup Genotyper 0.1.19 [24]
SNPSVM Genotyper 0.01 [25]

fastq quality filter was run with the following arguments:
-Q 33 -q 30 -p 50. Then reads were properly paired with a
custom script.

2.4. Aligning. Aligners used default arguments except when
a threads argument was used where available.The commands
used are as follows.

2.4.1. Bowtie2

(1) bowtie2 -p 10 -x $INDEX -1 raw data/
read 1 filtered.fastq -2 raw data/read 2
filtered.fastq -S alignments/NA12878.bt2
.sam

2.4.2. BWA Sampe

(1) bwa aln -t 10 genome/hg19.fa raw
data/read 1 filtered.fastq > alignments/
NA12878.R1.sai

(2) bwa aln -t 10 genome/hg19.fa raw data/
read 2 filtered.fastq > alignments/
NA12878.R2.sai

(3) bwa sampe genome/hg19.fa alignments/
NA12878.R1.sai alignments/NA12878.R2.sai
raw data/read 1 filtered.fastq raw data/
read 2 filtered.fastq > alignments/
NA12878.bwa-sampe.sam

2.4.3. BWAMem

(1) bwa mem -t 10 genome/hg19.fa raw data/
read 1 filtered.fastq raw data/read 2
filtered.fastq > alignments/NA12878
.bwa-mem.sam

2.4.4. CUSHAW3

(1) cushaw3 align -r $INDEX -t 10 -o
alignments/NA12878.CUSHAW3.sam -q
raw data/read 1 filtered.fastq
raw data/read 2 filtered.fastq

2.4.5. MOSAIK

(1) MosaikBuild -q raw data/read 1
filtered.fastq -q2 raw data/read
2 filtered.fastq -st illumina -out
alignments/NA12878.MOSAIK.mkb
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(2) MosaikAligner -in alignments/NA12878
.MOSAIK.mkb -out alignments/NA12878
.MOSAIK -p 10 -ia genome/hg19.dat -j
genome/hg19 15 -annpe tools/MOSAIK/src/
networkFile/2.1.78.pe.ann -annse
tools/MOSAIK/src/networkFile/
2.1.78.se.ann

2.4.6. Novoalign

(1) novoalign -d $INDEX -f raw data/
read 1 filtered.fastq raw data/
read 2 filtered.fastq -o SAM -c 10 >
alignments/NA12878.novoalign.sam

2.5. Alignment Depth of Coverage Calculation. To ensure
proper depth of coverage calculation, the Picard Tools
module CalculateHsMetrics was used with the following
arguments:

(1) java -jar CalculateHsMetrics.jar
I=NA12878.ALN.BQSR.bam O=ALN.O.log
R=genome/hg19.fa TI=genome/
truseq exome.bed BI=genome/
truseq exome.bed VALIDATION STRINGENCY=
SILENT PER TARGET COVERAGE=ALN.ptc.bed

It is important to note that the TruSeq exome bed file must
have the header from the SAM alignment file prepended to
it for this module to function. Further, column 6 must be
moved to column 4, and column 5 needs to be removed from
the TruSeq bed file.

2.6. Alignment File Processing. Processing the alignment files
(SAM/BAMfiles) required the following steps for all aligners:

(1) SAM to BAM conversion with SAMtools view:

(a) samtools view -bS alignments/
NA12878.ALN.sam -o alignments/
NA12878.ALN.bam

(2) BAM file sorting using the Picard Tools module,
SortSam:

(a) java -jar bin/SortSam.jar
VALIDATION STRINGENCY=SILENT
I=alignments/NA12878.ALN.bam
OUTPUT=alignments/NA12878.ALN.sorted
.bam SORT ORDER=coordinate

(3) PCR duplicate removal using the Picard Tools mod-
ule, MarkDuplicates:

(a) java -jar bin/MarkDuplicates.jar
VALIDATION STRINGENCY=SILENT
I=alignments/NA12878.ALN.sorted.bam
O=alignments/NA12878.ALN.dups
removed.bam REMOVE DUPLICATES=
true M=alignments/metrics

(4) Read Group added to alignment files using the Picard
Tools module, AddOrReplaceReadGroups:

(a) java -jar bin/AddOrReplaceReadGroups
.jar VALIDATION STRINGENCY=SILENT
I=alignments/NA12878.ALN.dups
removed.bam O=alignments/NA12878
.ALN.RG.bam SO=coordinate
RGID=NA12878 RGLB=NA12878
RGPL=illumina RGPU=NA12878
RGSM=NA12878 CREATE INDEX=true

(5) Realignment around indels using the GATKmodules
RealignerTargetCreator and IndelRealigner:

(a) java -XX:-DoEscapeAnalysis -jar
bin/GenomeAnalysisTK.jar -T
RealignerTargetCreator -R
genome/hg19.fa -I alignments/
NA12878.ALN.RG.bam -known
genome/mills.vcf -o tmp/ALN
.intervals

(b) java -XX:-DoEscapeAnalysis -jar
bin/GenomeAnalysisTK.jar -T
IndelRealigner -R genome/hg19.fa
-I alignments/NA12878.ALN.RG.bam
-known genome/mills.vcf -o
alignments/NA12878.ALN.indels.bam
--maxReadsForRealignment
100000 --maxReadsInMemory 1000000
-targetIntervals tmp/ALN
.intervals

(6) Base recalibration using the GATK modules BaseRe-
calibrator and PrintReads:

(a) java -XX:-DoEscapeAnalysis -jar
bin/GenomeAnalysisTK.jar -T
BaseRecalibrator -R genome/hg19.fa
-I alignments/NA12878.ALN.indels.bam
-knownSitesgenome/dbsnp 137
.hg19.excluding sites after 129
.only standard chroms.vcf -o
tmp/NA12878.ALN.grp

(b) java -XX:-DoEscapeAnalysis -jar
bin/GenomeAnalysisTK.jar -T
PrintReads -R genome/hg19.fa -I
alignments/NA12878.ALN.indels
.bam -BQSR tmp/NA12878.ALN.grp -o
alignments/NA12878.ALN.BQSR.bam

2.7. Variant calling. Default arguments were used for each
variant caller unless it contained a “threads” or “parallel” flag
in which case that was used as well. Additionally, indels were
called separately from SNVs where possible. Specifically, the
commands used are as follows.
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2.7.1. FreeBayes

(1) freebayes -f genome/hg19.fa -i -X -u -v
vcf files/NA12878.ALIGNER.freebayes
.raw.snv.vcf alignments/NA12878.ALIGNER
.BQSR.bam

(2) freebayes -f genome/hg19.fa -I -X -u -v
vcf files/NA12878.ALIGNER.freebayes
.raw.indel.vcf alignments/NA12878
.ALIGNER.BQSR.bam

2.7.2. GATK HaplotypeCaller

(1) java -XX:-DoEscapeAnalysis -jar bin/
GenomeAnalysisTK.jar -T HaplotypeCaller
-R genome/hg19.fa -I alignments/NA12878
.ALIGNER.BQSR.bam --dbsnp $DBSNP -o
vcf files/NA12878.ALIGNER.HC
.raw.vcf -stand call conf 50

2.7.3. GATK UnifiedGenotyper

(1) java -XX:-DoEscapeAnalysis -jar
bin/GenomeAnalysisTK.jar -T
UnifiedGenotyper -R genome/hg19.fa
-nt 10 -I alignments/NA12878.ALIGNER
.BQSR.bam -o vcf files/NA12878.ALIGNER
.UG.raw.snv.vcf -glm SNP -D $DBSNP

(2) java -XX:-DoEscapeAnalysis -jar
bin/GenomeAnalysisTK.jar -T
UnifiedGenotyper -R genome/hg19.fa -nt
10 -I alignments/NA12878.ALIGNER
.BQSR.bam -o vcf files/NA12878.ALIGNER
.UG.raw.indel.vcf -glm INDEL -D $MILLS

2.7.4. SAMtools Mpileup

(1) samtools mpileup -uf genome/hg19.fa
alignments/NA12878.ALIGNER.BQSR
.bam | bcftools view -bvcg - >
vcf files/NA12878.ALIGNER
.mpileup.bcf && bcftools view vcf files/
NA12878.ALIGNER.mpileup.bcf > vcf files/
NA12878.ALIGNER.mpileup.raw.vcf

2.7.5. SNPSVM

(1) java -XX:ParallelGCThreads=10 -jar
tools/SNPSVM/snpsvm.jar predict -R
genome/hg19.fa -B alignments/
NA12878.ALIGNER.BQSR.bam -M tools/
SNPSVM/models/default.model -V
vcf files/NA12878.ALIGNER.SNPSVM.raw.vcf

Due to the nonexistence of requisite CIGARflags in the align-
ment file, SNPSVM failed to call variants for CUSHAW3,
and SAMtools mpileup could not call variants on MOSAIK
alignments for the same reason. Also, due to the fact that

SNPSVM only detects SNVs, no indels were reported for this
program.

2.8. Variant Filtration. Filtration varied depending on the
variant caller being used. In the cases of GATK Haplotype-
Caller and GATK UnifiedGenotyper, the GATK modules,
VariantRecalibrator and ApplyRecalibration, were used to
filter SNVs using HapMap 3.3, the Omni 2.5 SNP BeadChip,
and dbSNP 137 without 1000 Genome data as training sets.
For SNPSVM, QUAL scores ≥ 4 and DP values ≥ 6 were
used. For FreeBayes and SAMtools, QUAL scores ≥ 20 and
DP values ≥ 6 were used.

2.9. Variant Comparison. For variant comparison,
USeq 8.8.1 was used to compare SNVs shared between
all datasets. To compare indels, the vcflib tool
vcfintersect was used. The TruSeq hg19 exome bed file
truseq exome targeted regions.hg19.bed.chr, obtained in
December 11, 2013, was used to restrict comparisons to
locations that could be captured by the exome pull down
kit used in the sequencing of SRR098401. This file can be
obtained from Illumina here: http://support.illumina.com/
sequencing/sequencing kits/truseq exome enrichment kit/
downloads.ilmn. To ensure that variants were represented
identically between different call sets, the vcflib tool
vcfallelicprimitives was used to preprocess vcf files.

2.10. Statistical Calculations

True Positive (TP). It is a mutation that was detected by the
pipeline being tested and is one that exists in the NIST-GiaB
list.

False Positive (FP). It is a mutation that was detected by the
pipeline being tested but is one that does not exist in the
NIST-GiaB list.

True Negative (TN). It is a mutation that was not detected by
the pipeline being tested and is one that does not exist in the
NIST-GiaB list.

False Negative (FN). It is a mutation that was not detected by
the pipeline being tested but is one that does exist in theNIST-
GiaB list:

PPV = TP
(TP + FP)

,

Sensitivity = TP
(TP + FN)

.

(1)

3. Results and Discussion

3.1. Prefiltering Variants. When performing variant analysis,
one of themany pitfalls that must be taken into consideration
is the exome sequence space (as defined by the exome capture
kit) and how it can affect the analysis results. In this case, we
had a single exome (SRR098401) that was extracted using the
Illumina TruSeq exome kit and sequenced on a HiSeq 2000.
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Table 3: Raw variant statistics for the 30 pipelines, including SNVs and indels.

Aligner Genotyper Raw TP SNVs Raw FP SNVs Raw TP indels Raw FP indels
Bowtie2 FreeBayes 23,985 73,473 806 2,482
Bowtie2 GATK HC 21,631 273 771 1,103
Bowtie2 GATK UG 25,136 2,276 418 420
Bowtie2 mpileup 21,930 1,030 734 1,414
Bowtie2 SNPSVM 17,613 47 — —
BWAmem FreeBayes 23,857 18,256 785 2,088
BWAmem GATK HC 21,707 367 779 1,348
BWAmem GATK UG 21,925 213 402 408
BWAmem mpileup 25,081 2,129 761 1,772
BWAmem SNPSVM 17,920 65 — —
BWA sampe FreeBayes 23,789 27,143 737 1,872
BWA sampe GATK HC 21,878 263 758 1,161
BWA sampe GATK UG 22,153 321 394 385
BWA sampe mpileup 25,206 2,205 684 1,401
BWA sampe SNPSVM 18,017 78 — —
CUSHAW3 FreeBayes 23,191 53,525 624 3,310
CUSHAW3 GATK HC 19,673 14,814 751 4,727
CUSHAW3 GATK UG 19,113 13,184 360 1,005
CUSHAW3 mpileup 22,171 9,694 681 1,983
CUSHAW3 SNPSVM — — — —
MOSAIK FreeBayes 23,373 39,203 783 3,359
MOSAIK GATK HC 13,528 111 500 458
MOSAIK GATK UG 17,147 76 392 284
MOSAIK mpileup — — — —
MOSAIK SNPSVM 14,586 8 — —
Novoalign FreeBayes 22,794 2,970 678 1,554
Novoalign GATK HC 21,407 473 779 1,370
Novoalign GATK UG 21,113 144 387 365
Novoalign mpileup 24,512 1,861 773 1,781
Novoalign SNPSVM 17,109 164 — —

With this in mind, we wanted to make sure that we were
measuring the ability of the bioinformatic tools to do their
jobs and not how well the Illumina TruSeq exome capture
kit worked. That is, we only want to try to call variants that
are supposed to be present in the exons as defined by the
pull down kit. For this reason, we use the bed file provided
by Illumina, not a generic annotation bed file, for example,
RefSeq for hg19. We found that for this particular individual,
according to the NIST-GiaB list, there should be a total of
34,886 SNVs and 1,473 indels within the regions defined by
the TruSeq bed file.

Once we filtered out variants that were not located in the
regions defined by the Illumina TruSeq exome bed file, we
went from hundreds of thousands of putative variants (data
not shown) to, on average, about 23,000 variants (SNVs and
indels) per pipeline (Table 3). This is an important step for
researchers to beginwith, as it significantly reduces the search
space for potentially interesting variants.

3.2. Raw Variant Results Compared to GiaB. One aspect we
wanted to understand when doing this comparison was the
importance of filtering variants detected by these tools. The
reason for this is that ideally one would like to have as high a
level of sensitivity as possible so that the mutations of interest
do not get lost in the filtering process. It therefore behooves
us to determine whether or not this step is necessary and to
what degree it is necessary, since it is clear from the NIST-
GiaB results and the Bamshad et al. [13] review that sensitivity
could be an issue.

As we can see in Table 3, filtering is neededmore for some
variant callers than for others when it comes to SNVs, and it
is absolutely necessary for indels. In most cases, the number
of TP variants is close to or higher than our expected number
of about 20,000 [13], but, on the other hand, in some cases the
number of FPs is very high.

Clearly there is a lot of variation in the numbers generated
by each pipeline. However, one can find some commonalities
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in the numbers that likely stem from the algorithmic origins
of each tool. FreeBayes produces both the largest number
of unfiltered variants and the highest number of FPs. It
is likely that we only see this kind of performance from
this tool due to the fact that while it is not the only
variant caller based on Bayesian inference it is unique in its
interpretation of alignments. That is, it is a haplotype-based
caller that identifies variants based on the sequence of the
reads themselves instead of the alignment, the latter of which
is how GATK’s UnifiedGenotyper operates.

Additionally we see the Burrows-Wheeler based aligners
perform very similarly to each other: Bowtie2, BWA mem,
and BWA sampe achieve similar results across the board. One
might surmise that this is likely due to the fact that all of
these tools utilize similar algorithms when performing their
designated task.This observation is supported by the fact that
MOSAIK (gapped alignments using the Smith-Waterman
algorithm) and CUSHAW3 (a hybrid seeding approach) both
have very different underlying algorithms and subsequently
produce very different results.

This difference in results correlating with different algo-
rithms is seen best in the SNPSVM results. Of the variant
callers, it is the only one that utilizes support vector machines
and model building to generate SNV calls. It would appear
that while it has the disadvantage of not being as sensitive as
other methods it does benefit from being extremely accurate
regardless of the aligner being used. This suggests that one
is able to skip the filtering step altogether when using this
variant caller.

With regard to indels, no aligner seems to stand out
among the rest as one that handles this type of mutation
well. In fact, when looking at the number of FPs, it is clear
that it is the variant caller that plays the largest role in the
accuracy of indel identification. Additionally, there are data
for neither CUSHAW3 plus SNPSVM nor MOSAIK plus
SAMtools mpileup pipelines due to the alignment files not
containing the necessaryCIGAR strings for the variant callers
to function downstream. Lastly, the reason there are no indel
data for SNPSVM is because this tool is solely used for
identification of SNVs.

3.3. Filtered Results Compared to GiaB. As in Table 4, stan-
dard filtering practices manage to remove a large number
of FP SNVs for each pipeline; however it seems that these
filters are a bit too aggressive inmost cases for SNVdetection,
but not strict enough for indels. This is made obvious when
looking at the differences in the number of FPs reported in
each dataset. For example, Bowtie2 with Freebayes sees a
removal of 72,570 FP SNVs (a reduction of 98%) but only
a removal of 1,736 FP indels (a reduction of 70%). It should
also be noted that the filters used were pipeline-dependent
and, for the most part, within each pipeline produced similar
reductions in SNV and indel FPs. The one exception here
is the number of variants identified from the CUSHAW3
alignments when compared to other alignments: overall the
number of TP SNVs is lower, the number of FP SNVs is
higher, and it is the only aligner that produces more than
1,000 FP indels after filtering.

Given the fact that filtering significantly reduces the
number of TP variants, it might be wise to, with the exception
of pipelines using CUSHAW3 and FreeBayes, skip this step
when searching for rare, high-impact variants. Instead, one
might spend more time on a filtering process that is based on
biology rather than statistics. For example, it may make more
sense to invest time identifying a small list of variants that
are likely to be high-impact: splice site mutations, indels that
cause frameshifts, truncationmutations, stop-loss mutations,
or mutations in genes that are known to be biologically
relevant to the phenotype of interest.

3.4. Average TPR and Sensitivity. As can be seen in Table 5,
the Positive Predictive Value (PPV) for each tool, with the
exception of CUSHAW3, ranges from 91% to 99.9% for SNVs,
but the average sensitivity is very low (around 50%). This
discrepancy could be due to a number of reasons, but the
most likely one is variable depth of coverage across exons.
We can see that, in addition to low SNV sensitivity, indel
sensitivity is low (around 30%); however the PPV for indels
is considerably lower (35.86% to 52.95%). This could be due
to any of the following reasons: very short indels are hard
to detect by conventional NGS [31], the representation of
indels by different variant callers can cause tools to incorrectly
claim that two indels are different, or alignment tools produce
different representations of the same indel [7].

Perhaps the most likely explanation for both types of
mutations is the issue of depth. As is the case with any variant
analysis study, an increase in depth of coverage leads to an
increase in sensitivity, but it is impossible to guarantee good
depth of coverage due to the inability of exome capture kits to
uniformly pull down exons [32–34]. Additionally, no single
exome capture kit covers every exon. Indeed, it has been
shown that variant analysis of whole genome sequencing
at an average depth lower than an exome performs better
due to the uniformity of said depth. Thus, it is likely that
a large number of variants are missing due to the fact that
the NIST-GiaB list was created from a compilation of exomic
and genomic sequencing data. Ultimately, to achieve proper
sensitivity one will eventually need to performwhole genome
sequencing, but that is currently cost-prohibitive for most
labs. Fortunately, this cost is continuing to drop, and we will
soon see a gradual shift from exome analysis to the more
complete whole genome analysis.

3.5. Sensitivity as a Function of Depth. Because sensitivity
reflects one of the most important performance metrics of
a tool and most of the tools struggle to achieve sensitivity
higher than 50%, we would like to further explore how depth
affected variant calling sensitivity. We looked at a number of
different combinations of tools to determine what the best
pipelines, variant callers, and aligners were. For Figure 2,
we took the five best combinations of variant callers and
aligners as determined by their sensitivity and false positive
rate (FPR). That is, we selected those which had the highest
number of TP SNVs called in addition to the lowest number
of FP SNVs. Upon inspection, the thing that stands out
immediately is that the sensitivity is lower than expected.
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Table 4: Filtered variant statistics for the 30 pipelines, including SNVs and indels.

Aligner Genotyper Filtered TP SNVs Filtered FP SNVs Filtered TP indels Filtered FP indels
Bowtie2 FreeBayes 17,504 903 481 746
Bowtie2 GATK HC 17,330 29 648 687
Bowtie2 GATK UG 19,937 49 395 338
Bowtie2 mpileup 17,049 153 402 541
Bowtie2 SNPSVM 13,983 8 — —
BWAmem FreeBayes 17,376 347 461 739
BWAmem GATK HC 19,388 302 689 860
BWAmem GATK UG 20,000 48 397 355
BWAmem mpileup 17,070 57 403 606
BWAmem SNPSVM 15,060 10 — —
BWA sampe FreeBayes 17,435 450 443 647
BWA sampe GATK HC 19,438 214 630 725
BWA sampe GATK UG 19,557 27 384 336
BWA sampe mpileup 17,049 111 387 518
BWA sampe SNPSVM 15,218 10 —
CUSHAW3 FreeBayes 16,620 7,627 362 1,294
CUSHAW3 GATK HC 16,590 2,195 665 1,551
CUSHAW3 GATK UG 17,939 2,202 357 545
CUSHAW3 mpileup 15,942 4,029 368 796
CUSHAW3 SNPSVM — — — —
MOSAIK FreeBayes 17,177 679 458 645
MOSAIK GATK HC 11,616 33 426 255
MOSAIK GATK UG 16,423 42 381 224
MOSAIK mpileup — — — —
MOSAIK SNPSVM 4,727 3 — —
Novoalign FreeBayes 16,658 219 384 559
Novoalign GATK HC 19,406 385 702 872
Novoalign GATK UG 20,521 46 386 315
Novoalign mpileup 16,493 62 396 579
Novoalign SNPSVM 14,451 18 — —

Table 5: Average Positive Predictive Value (PPV) and sensitivity for each tool.

Tool Average SNV PPV Average SNV sensitivity Average indel PPV Average indel sensitivity
Bowtie2 98.69% 49.19% 45.45% 32.69%
BWAmem 99.15% 50.96% 43.24% 33.10%
BWA sampe 99.09% 50.85% 45.31% 31.30%
CUSHAW3 80.69% 48.08% 29.50% 29.74%
MOSAIK 98.51% 35.79% 52.95% 28.63%
Novoalign 99.17% 50.18% 44.55% 31.70%
FreeBayes 90.95% 51.00% 35.86% 32.79%
GATK HaplotypeCaller 97.05% 51.03% 43.17% 31.79%
GATK UnifiedGenotyper 97.93% 50.77% 52.12% 31.57%
SAMtools mpileup 94.99% 50.76% 39.15% 31.30%
SNPSVM 99.92% 50.85% N/A N/A



BioMed Research International 9

Bowtie2.UG
BWA-mem.UG
BWA-sampe.HC

BWA-sampe.UG
Novoalign.UG

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

Se
ns

iti
vi

ty
 (T

PR
)

Depth at SNV position

Top 5 pipelines

Figure 2: Sensitivity as a function of depth for the top five pipelines.
The top five pipelines are shown here with the depth of every SNV
plotted against sensitivity.

All of the pipelines perform at roughly the same level: they
identify most of their variants by the time a depth of about
150x has been reached, which indicates that this depth is likely
sufficient and that the number of missing variants is probably
due to certain exons having lower than average coverage.Note
that four out of the five best performing pipelines have GATK
UnifiedGenotyper as their variant caller, demonstrating its
superior performance irrespective of the aligner used as
shown in Figure 3(b).

In addition to looking at the top five pipelines, we deter-
mined it would be useful to perform the same analysis on the
best aligner coupled with every variant caller (Figure 3(a)),
as well as the best variant caller coupled with every aligner
(Figure 3(b)). As with the pipelines, the best aligner was
identified as that which produced the highest number of TP
SNVs and the lowest number of FP SNVs—in this case BWA
mem.Despite having the best alignment to workwith, we still
see a fairly large difference between the variant callers, which
is likely attributable to the different algorithms they employ
(Figure 3(a)). However, in the case of the best performing
variant caller, GATK UnifiedGenotyper, there seems to be
less variation among the top four aligners indicating that it
performs fairly well in most situations with the exceptions
being CUSAHW3 and MOSAIK.

3.6. Shared Variants among the Top Pipelines. Lastly, we
wanted to know just how unique the variant call sets
were between the different pipelines. To do this, we again
focused on the top five variant calling pipelines: Bowtie2
plus UnifiedGenotyper, BWA mem plus UnifiedGenotyper,
BWA sampe plus HaplotypeCaller, BWA sampe plus Uni-
fiedGenotyper, andNovoalign plusUnifiedGenotyper. As can
be seen in Figure 4, there is a large amount of overlap between
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Figure 3: Sensitivity as a function of depth for the top aligner and
top variant caller. (a) Results for the depth of every SNV plotted
against sensitivity for the top aligner, BWA mem, paired with every
variant caller. (b) Results for the depth of every SNV plotted against
sensitivity for the top variant caller, GATKUnifiedGenotyper, paired
with every aligner.
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Figure 4: The intersection of the SNVs identified by the top five
pipelines.

the five different pipelines in question, with 15,489 SNVs
(70%) shared out of a total of 22,324 distinct variants.
However, one could also argue that this is largely due to
four of the five pipelines using the UnifiedGenotyper as their
variant caller. This notion is corroborated by the fact that the
largest number of variants unique to a pipeline, 367, belongs
to the BWA sampe plus HaplotypeCaller combination. It is
also worth noting that the second highest number of unique
SNVs also belongs to the BWA sampe aligner, so it is possible
that the high number of unique SNVs is better attributed to
the aligner than the variant caller.

4. Conclusions

We found that among the thirty different pipelines tested
Novoalign plus GATKUnifiedGenotyper exhibited the high-
est sensitivity while maintaining a low number of FP for
SNVs. Of the aligners, BWAmem consistently performed the
best, but results still varied greatly depending on the variant
caller used. Naturally, it follows that the best variant caller,
GATK UnifiedGenotyper, mostly produced similar results
regardless of the aligner used. However, it is readily apparent
that indels are still difficult for any pipeline to handle with
none of the pipelines achieving an average sensitivity higher
than 33% or a PPV higher than 53%. In addition to the low
overall performance we see in detecting indels, sensitivity,
regardless of mutation type, is a problem for every pipeline
outlined in this paper. The expected number of SNVs for
NA12878’s exome is 34,886, but even when using the union of
all the variants identified by the top five pipelines, the greatest
number identified was very low (22,324). It seems that while
still very useful exome analysis has its limitations even when
it comes to something as seemingly simple as SNV detection.
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P. N. Robinson, “Microindel detection in short-read sequence
data,” Bioinformatics, vol. 26, no. 6, Article ID btq027, pp. 722–
729, 2010.

[9] Z. Wei, W. Wang, P. Hu, G. J. Lyon, and H. Hakonarson,
“SNVer: a statistical tool for variant calling in analysis of pooled
or individual next-generation sequencing data,” Nucleic Acids
Research, vol. 39, no. 19, article e132, 2011.

[10] R. Nielsen, T. Korneliussen, A. Albrechtsen, Y. Li, and J. Wang,
“SNP calling, genotype calling, and sample allele frequency
estimation from new-generation sequencing data,” PLoS ONE,
vol. 7, no. 7, Article ID e37558, 2012.

[11] J. Kim, Y. Lee, and N. Kim, “Bioinformatics interpretation of
exome sequencing: blood cancer,” Genomics & Informatics, vol.
11, no. 1, pp. 24–33, 2013.

[12] G. R. Abecasis, D. Altshuler, A. Auton et al., “A map of human
genome variation from population-scale sequencing,” Nature,
vol. 467, no. 7319, pp. 1061–1073, 2010.

[13] M. J. Bamshad, S. B.Ng,A.W. Bighamet al., “Exome sequencing
as a tool for Mendelian disease gene discovery,” Nature Reviews
Genetics, vol. 12, no. 11, pp. 745–755, 2011.

[14] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment
with Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, 2012.

[15] H. Li and R. Durbin, “Fast and accurate short read alignment
with Burrows-Wheeler transform,” Bioinformatics, vol. 25, no.
14, pp. 1754–1760, 2009.

[16] H. Li, “Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM,” http://arxiv.org/abs/1303.3997.

[17] Y. Liu, B. Popp, and B. Schmidt, “CUSHAW3: sensitive and
accurate base-space and color-space short-read alignment with
hybrid seeding,”PLoSONE, vol. 9, no. 1, Article ID e86869, 2014.

[18] W.-P. Lee, M. P. Stromberg, A. Ward, C. Stewart, E. P. Gar-
rison, and G. T. Marth, “MOSAIK: a hash-based algorithm
for accurate next-generation sequencing short-read mapping,”
PLoS ONE, vol. 9, no. 3, Article ID e90581, 2014.

[19] F. Hach, F. Hormozdiari, C. Alkan, I. Birol, E. E. Eichler, and S.
C. Sahinalp, “mrsFAST: a cache-oblivious algorithm for short-
read mapping,” Nature Methods, vol. 7, no. 8, pp. 576–577, 2010.

[20] M. David, M. Dzamba, D. Lister, L. Ilie, and M. Brudno,
“SHRiMP2: sensitive yet practical short read mapping,” Bioin-
formatics, vol. 27, no. 7, pp. 1011–1012, 2011.

[21] G. Lunter and M. Goodson, “Stampy: a statistical algorithm for
sensitive and fastmapping of Illumina sequence reads,”Genome
Research, vol. 21, no. 6, pp. 936–939, 2011.

[22] E. Garrison and G. Marth, “Haplotype-based variant detection
from short-read sequencing,” http://arxiv.org/abs/1207.3907.

[23] M. A. DePristo, E. Banks, R. Poplin et al., “A framework for
variation discovery and genotyping using next-generationDNA
sequencing data,” Nature Genetics, vol. 43, no. 5, pp. 491–501,
2011.

[24] H. Li, B. Handsaker, A. Wysoker et al., “The sequence align-
ment/map format and SAMtools,”Bioinformatics, vol. 25, no. 16,
pp. 2078–2079, 2009.

[25] B. D. O’Fallon, W. Wooderchak-Donahue, and D. K. Crock-
ett, “A support vector machine for identification of single-
nucleotide polymorphisms from next-generation sequencing
data,” Bioinformatics, vol. 29, no. 11, pp. 1361–1366, 2013.

[26] K. Cibulskis, M. S. Lawrence, S. L. Carter et al., “Sensitive detec-
tion of somatic point mutations in impure and heterogeneous
cancer samples,”Nature Biotechnology, vol. 31, no. 3, pp. 213–219,
2013.

[27] R. Goya, M. G. F. Sun, R. D. Morin et al., “SNVMix: predicting
single nucleotide variants from next-generation sequencing of
tumors,” Bioinformatics, vol. 26, no. 6, pp. 730–736, 2010.

[28] D. C. Koboldt, Q. Zhang, D. E. Larson et al., “VarScan 2: somatic
mutation and copy number alteration discovery in cancer by
exome sequencing,” Genome Research, vol. 22, no. 3, pp. 568–
576, 2012.

[29] R. Li, Y. Li, X. Fang et al., “SNP detection for massively parallel
whole-genome resequencing,” Genome Research, vol. 19, no. 6,
pp. 1124–1132, 2009.

[30] G. A. Van der Auwera, M. O. Carneiro, C. Hartl et al.,
“From fastQ data to high-confidence variant calls: the genome
analysis toolkit best practices pipeline,” Current Protocols in
Bioinformatics, vol. 43, 2013.

[31] C. A. Albers, G. Lunter, D. G. MacArthur, G. McVean, W. H.
Ouwehand, and R. Durbin, “Dindel: accurate indel calls from
short-read data,” Genome Research, vol. 21, no. 6, pp. 961–973,
2011.

[32] V. N. Rykalina, A. A. Shadrin, V. S. Amstislavskiy et al.,
“Exome sequencing from nanogram amounts of starting DNA:
comparing three approaches,” PLoS ONE, vol. 9, no. 7, Article
ID e101154, 2014.

[33] A. M. Meynert, M. Ansari, D. R. FitzPatrick, and M. S. Taylor,
“Variant detection sensitivity and biases in whole genome and
exome sequencing,” BMC Bioinformatics, vol. 15, article 247,
2014.

[34] C. S. Chilamakuri, S. Lorenz,M.-A.Madoui et al., “Performance
comparison of four exome capture systems for deep sequenc-
ing,” BMC Genomics, vol. 15, article 449, 2014.


